git clone https://huggingface.co/AXERA-TECH/Qwen3-1.7B File Description
m5stack@raspberrypi:~/rsp/Qwen3-1.7B$ ls -lh
total 21M
-rw-rw-r-- 1 m5stack m5stack 0 Aug 12 09:07 config.json
-rw-rw-r-- 1 m5stack m5stack 1.1M Oct 13 09:46 main_api_ax650
-rw-r--r-- 1 m5stack m5stack 132 Oct 13 11:45 main_api_axcl_aarch64
-rw-rw-r-- 1 m5stack m5stack 8.5M Oct 13 09:46 main_api_axcl_x86
-rw-rw-r-- 1 m5stack m5stack 963K Oct 13 09:46 main_ax650
-rw-rw-r-- 1 m5stack m5stack 1.7M Oct 13 09:46 main_axcl_aarch64
-rw-rw-r-- 1 m5stack m5stack 8.1M Oct 13 09:46 main_axcl_x86
-rw-rw-r-- 1 m5stack m5stack 277 Aug 12 09:07 post_config.json
drwxrwxr-x 2 m5stack m5stack 4.0K Aug 12 09:07 qwen2.5_tokenizer
drwxrwxr-x 2 m5stack m5stack 4.0K Oct 13 11:46 qwen3-1.7b-ax650
drwxrwxr-x 2 m5stack m5stack 4.0K Aug 12 09:10 qwen3_tokenizer
-rw-rw-r-- 1 m5stack m5stack 7.6K Aug 12 09:07 qwen3_tokenizer_uid.py
-rw-rw-r-- 1 m5stack m5stack 12K Oct 13 09:43 README.md
-rw-rw-r-- 1 m5stack m5stack 2.5K Oct 13 09:43 run_qwen3_1.7b_int8_ctx_ax650.sh
-rw-rw-r-- 1 m5stack m5stack 2.5K Oct 13 09:43 run_qwen3_1.7b_int8_ctx_axcl_aarch64.sh
-rw-rw-r-- 1 m5stack m5stack 2.5K Oct 13 09:43 run_qwen3_1.7b_int8_ctx_axcl_x86_api.sh
-rw-rw-r-- 1 m5stack m5stack 2.5K Oct 13 09:43 run_qwen3_1.7b_int8_ctx_axcl_x86.sh python -m venv qwen source qwen/bin/activate pip install transformers jinja2 python qwen3_tokenizer_uid.py --port 12345 (qwen) m5stack@raspberrypi:~/Qwen3-0.6B $ python qwen3_tokenizer_uid.py --port 12345
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
Server running at http://0.0.0.0:12345 chmod +x main_axcl_aarch64 run_qwen3_1.7b_int8_ctx_axcl_aarch64.sh ./run_qwen3_1.7b_int8_ctx_axcl_aarch64.sh After a successful start, the output is:
m5stack@raspberrypi:~/rsp/Qwen3-1.7B$ ./run_qwen3_1.7b_int8_ctx_axcl_aarch64.sh
[I][ Init][ 136]: LLM init start
[I][ Init][ 34]: connect http://127.0.0.1:12345 ok
[I][ Init][ 57]: uid: 95e7d5f3-fc8d-48ea-b489-1de9f37924d1
bos_id: -1, eos_id: 151645
3% | ██ | 1 / 31 [1.08s<33.54s, 0.92 count/s] tokenizer init ok[I][ Init][ 45]: LLaMaEmbedSelector use mmap
6% | ███ | 2 / 31 [1.08s<16.77s, 1.85 count/s] embed_selector init ok
[I][ run][ 30]: AXCLWorker start with devid 0
100% | ████████████████████████████████ | 31 / 31 [64.75s<64.75s, 0.48 count/s] init post axmodel ok,remain_cmm(3788 MB)
[I][ Init][ 237]: max_token_len : 2559
[I][ Init][ 240]: kv_cache_size : 1024, kv_cache_num: 2559
[I][ Init][ 248]: prefill_token_num : 128
[I][ Init][ 252]: grp: 1, prefill_max_token_num : 1
[I][ Init][ 252]: grp: 2, prefill_max_token_num : 512
[I][ Init][ 252]: grp: 3, prefill_max_token_num : 1024
[I][ Init][ 252]: grp: 4, prefill_max_token_num : 1536
[I][ Init][ 252]: grp: 5, prefill_max_token_num : 2048
[I][ Init][ 256]: prefill_max_token_num : 2048
________________________
| ID| remain cmm(MB)|
========================
| 0| 3788|
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
[I][ load_config][ 282]: load config:
{
"enable_repetition_penalty": false,
"enable_temperature": false,
"enable_top_k_sampling": true,
"enable_top_p_sampling": false,
"penalty_window": 20,
"repetition_penalty": 1.2,
"temperature": 0.9,
"top_k": 1,
"top_p": 0.8
}
[I][ Init][ 279]: LLM init ok
Type "q" to exit, Ctrl+c to stop current running
[I][ GenerateKVCachePrefill][ 335]: input token num : 21, prefill_split_num : 1 prefill_grpid : 2
[I][ GenerateKVCachePrefill][ 372]: input_num_token:21
[I][ main][ 236]: precompute_len: 21
[I][ main][ 237]: system_prompt: You are Qwen, created by Alibaba Cloud. You are a helpful assistant.
prompt >> hello
[I][ SetKVCache][ 628]: prefill_grpid:2 kv_cache_num:512 precompute_len:21 input_num_token:12
[I][ SetKVCache][ 631]: current prefill_max_token_num:1920
[I][ Run][ 869]: input token num : 12, prefill_split_num : 1
[I][ Run][ 901]: input_num_token:12
[I][ Run][1030]: ttft: 796.38 ms
<think>
</think>
Hello! How can I assist you today?
[N][ Run][1182]: hit eos,avg 7.38 token/s
[I][ GetKVCache][ 597]: precompute_len:46, remaining:2002
prompt >> (qwen) m5stack@raspberrypi:~/Qwen3-0.6B $ python qwen3_tokenizer_uid.py --port 12345
None of PyTorch, TensorFlow >= 2.0, or Flax have been found. Models won't be available and only tokenizers, configuration and file/data utilities can be used.
Server running at http://0.0.0.0:12345 cp run_qwen3_1.7b_int8_ctx_axcl_x86_api.sh run_qwen3_1.7b_int8_ctx_axcl_aarch_api.sh
chmod +x main_api_axcl_aarch64 run_qwen3_1.7b_int8_ctx_axcl_aarch_api.sh ./main_api_axcl_aarch64 \
--system_prompt "You are Qwen, created by Alibaba Cloud. You are a helpful assistant." \
--template_filename_axmodel "qwen3-1.7b-ax650/qwen3_p128_l%d_together.axmodel" \
--axmodel_num 28 \
--url_tokenizer_model "http://127.0.0.1:12345" \
--filename_post_axmodel qwen3-1.7b-ax650/qwen3_post.axmodel \
--filename_tokens_embed qwen3-1.7b-ax650/model.embed_tokens.weight.bfloat16.bin \
--tokens_embed_num 151936 \
--tokens_embed_size 2048 \
--use_mmap_load_embed 1 \
--devices 0 ./run_qwen3_1.7b_int8_ctx_axcl_aarch_api.sh After a successful start, the output is:
m5stack@raspberrypi:~/rsp/Qwen3-1.7B $ ./run_qwen3_1.7b_int8_ctx_axcl_aarch_api.sh
[I][ Init][ 130]: LLM init start
[I][ Init][ 34]: connect http://127.0.0.1:12345 ok
[I][ Init][ 57]: uid: 3f3c54ef-ddfa-4fbc-bd2f-74523109857e
bos_id: -1, eos_id: 151645
3% | ██ | 1 / 31 [0.95s<29.33s, 1.06 count/s] tokenizer init ok[I]
[I][ Init][ 221]: max_token_len : 2047
[I][ Init][ 224]: kv_cache_size : 1024, kv_cache_num: 2047
[I][ Init][ 232]: prefill_token_num : 128
[I][ Init][ 236]: grp: 1, prefill_max_token_num : 1
[I][ Init][ 236]: grp: 2, prefill_max_token_num : 128
[I][ Init][ 236]: grp: 3, prefill_max_token_num : 256
[I][ Init][ 236]: grp: 4, prefill_max_token_num : 384
[I][ Init][ 236]: grp: 5, prefill_max_token_num : 512
[I][ Init][ 236]: grp: 6, prefill_max_token_num : 640
[I][ Init][ 236]: grp: 7, prefill_max_token_num : 768
[I][ Init][ 236]: grp: 8, prefill_max_token_num : 896
[I][ Init][ 236]: grp: 9, prefill_max_token_num : 1024
[I][ Init][ 240]: prefill_max_token_num : 1024
________________________
| ID| remain cmm(MB)|
========================
| 0| 3665|
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯
[I][ load_config][ 282]: load config:
{
"enable_repetition_penalty": false,
"enable_temperature": false,
"enable_top_k_sampling": true,
"enable_top_p_sampling": false,
"penalty_window": 20,
"repetition_penalty": 1.2,
"temperature": 0.9,
"top_k": 1,
"top_p": 0.8
}
[I][ Init][ 263]: LLM init ok
Server running on port 8000... | Method | Path | Function |
|---|---|---|
| GET | /api/stop | Stop current inference task |
| POST | /api/reset | Reset context (can set a new system prompt) |
| POST | /api/generate | Asynchronous text generation (stream output retrieved via /api/generate_provider) |
| GET | /api/generate_provider | Get the current incremental output (for polling) |
| POST | /api/chat | Synchronous Q&A (single turn) |
curl -X POST "http://localhost:8000/api/generate" \
-H "Content-Type: application/json" \
-d '{
"prompt": "Hello, please introduce yourself.",
"temperature": 0.7,
"top-k": 40
}' Response:
{"status": "ok"} Notes:
"status": "ok" immediately, generation runs in the backgroundRetrieve generation content and progress (streaming via polling):
curl "http://localhost:8000/api/generate_provider" Response:
{"done":false,"response":"\n\nHello! I'm a large language model developed by Alibaba"} When "done": true, it indicates the generation is complete.
You can request every 200~500ms to implement client-side streaming output.
Reset LLM context (clear dialog history), optionally provide a new system prompt:
curl -X POST "http://localhost:8000/api/reset" \
-H "Content-Type: application/json" \
-d '{"system_prompt": "You are a helpful assistant."}' Response:
{"status": "ok"} Used to clear KV cache or switch conversation scenarios.
Immediately interrupt the current generation task:
curl "http://localhost:8000/api/stop" Response:
{"status": "ok"} Send a message and return the result synchronously (non-streaming):
curl -X POST "http://localhost:8000/api/chat" \
-H "Content-Type: application/json" \
-d '{
"messages": [
{"role": "user", "content": "Hello, please introduce yourself in one sentence."}
],
"temperature": 0.7
}' Response:
{"done":true,"message":"<think>\n\n</think>\n\nHi there! I'm a large language model developed by Alibaba Cloud, designed to assist with a wide range of tasks and answer questions."} /api/generate + /api/generate_provider are asynchronous/streaming mode (suitable for UI scenarios)
/api/chat is synchronous blocking mode (suitable for obtaining a complete answer in one go)
If the model is running, the request will return:
{"error": "llm is running"} If the model is not initialized, it will return:
{"error": "Model not init"} POST /api/generate sends prompt
Client polls GET /api/generate_provider every few hundred milliseconds
Stop polling when done:true appears